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Multigrid convergence of inviscid �xed- and rotary-wing �ows
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SUMMARY

The a�ect of multigrid acceleration implemented within an upwind-biased Euler method is presented, and
applied to �xed-wing and rotary-wing �ows. The convergence of �xed- and rotary-wing computations is
shown to be vastly di�erent, and multigrid is shown to be less e�ective for rotary-wing �ows. The �ow
about a hovering rotor su�ers from very slow convergence of the inner blade region, where the �ow
is e�ectively incompressible. Furthermore, the vortical wake must develop over several turns before
convergence is achieved, whereas for �xed-wing computations the far-�eld grid and solution have little
signi�cance. Results are presented for single mesh and two, three, four, and �ve level multigrid, and
using �ve levels a reduction in required CPU time of over 80 per cent is demonstrated for rotary-wing
computations, but 94 per cent for �xed-wing computations. It is found that a simple V-cycle is the most
e�ective, smoothing in the decreasing mesh density direction only, with a relaxed trilinear prolongation
operator. Copyright ? 2002 John Wiley & Sons, Ltd.
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INTRODUCTION

Increases in computer processing speed and memory have allowed numerical methods to be
applied to increasingly complex �ows and geometries. Furthermore, growing maturity of these
methods have seen them used increasingly in initial design stages. The application of CFD
methods to �xed-wing analysis and design is now commonplace, but the numerical simulation
of the �ow about a helicopter rotor is still a very expensive problem for CFD methods. The
complexity of the �ow—non-linear, highly three-dimensional, and unsteady—is increased due
the e�ect of each blade moving into a �uid that has already been disturbed by a previous
blade. The accurate capture of the vortical wake is vital, as the loading on a blade is a�ected
signi�cantly by this wake, and particularly the tip vortex, shed from the previous one. The
requirements on the numerical mesh are fundamentally di�erent for a hovering rotor �ow than
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a �xed-wing �ow, since the tip vortex capture requires a much higher grid density away from
the surface than for a �xed wing case, where far-�eld mesh and solution are normally of
little signi�cance. Hence, rotary-wing �ow computations normally require �ner meshes than
�xed-wing �ows. Furthermore, a large numerical integration time is required for the wake to
develop over several turns. This can lead to impractical run times, and so is an ideal candidate
for parallelization [1]. However, parallel architectures are not always available, so a multigrid
approach can be valuable in reducing run-times. In this approach, which originates from works
by Fedorenko [2], Bakhvarov [3] and later by Brandt [4; 5], errors computed on the �nest
mesh are transferred to progressively coarser meshes to compute the corrections to the �ne
mesh solution. As larger time-steps are allowed on the coarser meshes, errors are propagated
out of the domain faster than is possible on the �ne mesh, resulting in faster convergence,
see for example References [6–10]. This paper describes the implementation of the multigrid
technique to an inviscid solver. In particular, the di�erent convergence properties of �xed-
and rotary-wing �ows are considered.
Numerical solutions of �xed-wing �ows have been commonplace since the early 1980s,

and are too numerous to cite. However, numerical solutions for hovering rotor �ows are less
common for inviscid �ows, see for example References [1; 11–20], and for viscous �ows
see for example References [21–23]. It is well known that the numerical dissipation used by
central-di�erence schemes has a signi�cant e�ect on the solution in terms of wake capturing.
This is more signi�cant for rotary-wing �ows, since the accurate capture of the wake is
important for the surface loads. It is shown in Reference [15] that a high level of dissipation
results in rapid convergence but poor wake capturing, and hence incorrect blade loads, while
a low level of dissipation results in more accurate wake and hence blade load representation,
but slower convergence. To avoid this problem, an upwind Euler solver is used in the current
work, since this accurately models the physics of the �ow, in terms of characteristic behaviour,
and so is naturally dissipative. A �nite-volume solver is presented, based on the �ux-vector
splitting of Van-Leer [24].
The structured grid approach is used in the current work, and the trans�nite interpolation

technique adopted, as this can be used for steady and unsteady computations. Unsteady �ows,
for example an oscillating wing or rotor blade in forward �ight, require moving surfaces and
hence meshes. Trans�nite interpolation has been previously shown to be well suited to struc-
tured moving grids [25–28] and, when adopted in conjunction with a periodic transformation,
for helicopter rotor �ows [1; 20; 29–32]. The interpolation is simple, and hence requires little
CPU time, and is extremely �exible.
In this paper the �ow-solver, grid generation and multigrid implementation procedures are

�rst presented. Then results of multigrid computations of �xed-wing �ow and hovering multi-
bladed rotor �ow are considered for varying numbers of grid levels. Reductions in required
CPU times of approximately 94 per cent are demonstrated for a �ve-level �xed-wing compu-
tation, but only 80 per cent for a �ve-level rotary-wing computation. The di�erence is partly
due to the requirement to capture the vortical wake over several turns. This requires a much
longer numerical integration time than a �xed-wing case, and convergence is not simply de-
pendent on propagating all errors away from the solid surface as quickly as possible, as is
the case for �xed-wing �ows. Furthermore, near the blade root the �ow is at very low Mach
number, and this region also su�ers from slow convergence.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:121–140



FIXED-WING AND ROTARY-WING FLOWS 123

EULER SOLVER

Hovering rotor blade computations require a rigid but rotating grid. However, instead of solv-
ing an unsteady problem, the three-dimensional unsteady Euler equations are transformed to
a blade-�xed rotating reference frame. In this frame the hover case is then a steady prob-
lem. The equations may be transformed in terms of absolute or relative velocities. Absolute
velocities are used here. If the frame rotates with angular velocity !=[�x;�y;�z]T , and the
absolute velocity vector in the rotating frame is denoted by q

r
=[ur; vr; wr]T , the resulting

Euler equations in integral form are then

d
dt

∫
Vr

Ur dVr +
∫
@Vr

Fr · nr dSr +
∫
Vr

Gr dVr =0 (1)

where

Ur=




�
�ur

�vr

�wr

E



; Fr=




�[q
r
− (!× r)]

�ur[qr − (!× r)] + Pir

�vr[qr − (!× r)] + Pj
r

�wr[qr − (!× r)] + Pkr

E[q
r
− (!× r)] + Pq

r



; Gr=




0

�(!× q
r
) · ir

�(!× q
r
) · j

r

�(!× q
r
) · kr

0




(2)

Here Gr is the source term resulting from the transformation, and r=[xr; yr; zr]T is the coor-
dinate vector. The equation set is closed by

P=(�− 1)
[
E − �

2
q2
r

]
(3)

For �xed-wing computations the rotation vector is simply set to zero.

Upwind di�erence scheme

A �nite-volume upwind scheme is used to solve the integral form of the Euler equations
(Equation (2)), since by correctly modelling the characteristic behaviour of the �ow, upwind
schemes are naturally dissipative. The �ux-vector splitting of Van-Leer [24; 33] is used.
For each cell face a local orthogonal coordinate system (�; �; �) is adopted, where the

principal coordinate direction � is normal to the cell face. The unit normal to each cell face
is de�ned as the unit vector in the � direction, n�. Unit vectors in two directions, lying in
the cell face, n� and n�, are then de�ned to form an orthogonal axis system.
To compute the �ux in the principal direction, i.e. the total �ux across the face, the cartesian

velocity components zin the local cell face axis system are required,

�u= q
r
· n� (4)

�v= q
r
· n� (5)

�w= q
r
· n� (6)
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and the contravariant velocity normal to the face
�U =[q

r
− (!× r)] · n� (7)

The general �ux function in the principal direction, �F, is then

�F=




� �U

� �U �u+ P

� �U �v

� �U �w

E �U + P �u




(8)

and the total �ux across the face is simply �FA, where A is the cell face area.
Since quantities are evaluated at cell face centres, care must be taken when evaluating the

geometric terms. The continuity equation means that for steady �ow∫
@V

�q · n dS=0 (9)

must be satis�ed. By considering a uniform �ow it can be seen that, to avoid introducing
error the conditions

6∑
k=1
(n�A)k = 0 (10)

where k represents the six cell faces, must be satis�ed for every cell. This is satis�ed by
evaluating the cell face normals and area using the cross product of the diagonal vectors. The
rotation of the axis requires satisfaction of a further condition. The continuity equation in this
situation means ∫

@Vr

�[q
r
− (!× r)] · nr dSr =0 (11)

must also be satis�ed. By considering a rotating mesh through a uniform �ow, it can be seen
that the condition

6∑
k=1
[(!× r) · n�A]k =0 (12)

must be satis�ed for every cell, otherwise errors are introduced into all equations. To satisfy
this condition the area moment vector is de�ned for each cell face

M=
∫
@Vr

r× n dSr (13)

and is evaluated as in Reference [34]. If this vector is normalized by the cell face area

�M=
M
A

(14)

the contravariant velocity can be expressed as
�U = q

r
· n� −! · �M (15)

and Equation (12) is satis�ed.
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The general �ux vector is split into a forward part, �F+, associated with positive moving
waves only, i.e. all eigenvalues of [(@ �F+)=(@U)]¿0, and a backward part, �F−, associated
with negative moving waves only, all eigenvalues of [(@ �F−)=(@U)]60. At each cell face a
pair of states are thus de�ned and a single numerical �ux derived from this pair. The split
�ux components are,

�F
±
=




f±
mass

f±
mass · [ (− �U±2a)

� + �u]

f±
mass · �v

f±
mass · �w
f±
energy




(16)

where

f±
mass = ± �a

4
( �M ± 1)2 (17)

f±
energy =f±

mass

{
[(�− 1) �U ± 2a]2

2(�2 − 1) −
�U
2

2
+
q2
r

2
+ (! · �M) (−

�U ± 2a)
�

}
(18)

and the Mach number normal to the cell face is de�ned as

�M =
�U
a
; (19)

a=

√
�P
�

(20)

The above splitting is only valid for | �M |61. Otherwise
�F+ = �F

�F−=0

}
�M¿1 (21)

�F+ =0

�F−= �F

}
�M¡−1 (22)

The values of the conserved variables used in the split �uxes must be consistent with the
splitting, i.e. the positive vector must be evaluated using information from upstream (in the
principal direction) of the cell face only, and the negative vector using information from
downstream only. Hence the �ux vector is split by

�F= �F+(U+r ) + �F−(U−
r ) (23)

with the upwind interpolations given by a third-order spatial interpolation [35]. High order
schemes su�er from spurious oscillations in regions of high �ow quantity gradients, and so
a �ux limiter is required, and the continuously di�erentiable one due to Anderson et al. [35]
was chosen.
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Once �F has been split into its components the resulting �ux must be rotated back to the
original coordinate system. This is achieved by

Fr · nr=R−1[ �F+(U+r ) + �F−(U−
r )] (24)

where R is the rotation matrix.

Time-stepping scheme An explicit multi-stage Runge–Kutta scheme is used to integrate the
equations forward in time. However, the four-stage scheme of Jameson et al. [36] is not
e�cient for an upwind scheme, since the stability limit is greatly reduced from the 2

√
2

value for a central di�erence scheme [37]. A three-stage scheme is used, which can operate
at a CFL number of 1.5. The time-stepping scheme used for each computational cell to
integrate from time level n to n+ 1 is

Un+�j
r =Un

r − �j
�t
V

{
VGr(U

n+�j−1
r ) +

6∑
k=1

R−1
k [ �F

+(U+r )
n+�j−1

k + �F−(U−
r )

n+�j−1

k ]Ak

}
(25)

with �0; 1; 2; 3 = 0; 1=4; 1=2; 1. In the above, V is the cell volume, and k represents the six cell
faces. The source term is a simple volume integral, so does not need to be upwinded.
Apart from the �ux-limiter, no dissipation is required by the upwind scheme since, by

accurately modelling the physics of the �ow the upwind di�erencing is naturally dissipative.
As this is a steady �ow local time-stepping is used to accelerate convergence.

Boundary conditions For the hovering rotor cases far�eld boundary conditions are periodic
at the upstream and downstream faces (see next section). At the upper, lower, and spanwise
boundaries characteristic conditions are applied, allowing for grid speeds. This is made simpler
as absolute velocities are considered. In the �xed wing case, a symmetry condition is applied
at the root plane, and far�eld conditions are characteristic based.
In the rotary case experience has shown that convergence that can be a�ected if the far�eld

boundaries, particularly the lower one, are not at a su�cient distance. Hence, the upper, lower,
and spanwise boundaries are set at 25 chords from the blade root.

GRID GENERATION

A trans�nite interpolation method, originally described by Gordon and Hall [38], is used
to generate structured grids. Trans�nite interpolation gives the interpolated function f(�; �; �)
throughout a de�ned region by a direct algebraic mapping. Control parameters can then be
used to control the behaviour of the function, in terms of its derivatives normal to a line, at
any of the lines where the function is known, by incorporating a set of univariate blending
functions.
The general trans�nite interpolation method results in a recursive algorithm, see Eriksson

[39], but this can be signi�cantly reduced. The interpolation is performed here by

f(�; �; �) =  01 (�)f(�; �; 0) +  11 (�)
@
@�
f(�; �; 1)

+ 02 (�)[ 
0
2 (�)f(�; �; 1) +  01 (�)f2(�; �; 1)] (26)
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where f(�; �; 0) is the inner boundary, f(�; �; 1) the outer boundary, and f2(�; �; 1) a smoothed
outer boundary function to control smoothness.
The most e�ective blending functions have been found to be,

��=
{
e� − 1− �

e − 2
}st

(27)

 01 = 1− �� (28)

 11 =
√
��−

{
e �� − 1− ��

e − 2

}
(29)

 02 = �� (30)

where st is a stretching exponent. The stretching exponent st for each grid line is computed
using an iterative procedure, such that the grid cells at the inner boundary have a pre-de�ned
aspect ratio.
After generating the volume mesh an elliptic smoothing is applied [40]. The smoothing has

been coded such that boundaries are also smoothed (see Reference [32] for more details).

Periodic grid for rotary-wing computations

For N -bladed hovering rotor calculations only one blade, and 1=N of the cylindrical domain,
need be considered, and the up- and downstream boundary planes can be treated as periodic
boundaries. Hence, the grid must be generated with a suitable outer boundary distribution.
This is achieved by initially generating the outer boundary, regardless of the grid topology,
as a box. The outer boundary box is then scaled according to a local radius function. The
distance between the inner and outer boundary is set to the length of the circular arc with the
local radius. The trans�nite interpolation algorithm is then used to compute the grid, and once
the grid has been generated the entire grid, except the region over the blade, is transformed
to produce a part-cylindrical domain (more details of the grid generation can be found in
References [20; 32]). The geometry considered is that of the well known Caradonna–Tung
two-bladed rotor [41]. This is a rotor with no twist or taper, aspect ratio six, with a constant
NACA0012 section. The incidence is 8◦. In the hover case only one blade, and half the
physical domain, need be considered. The axis system used is z vertical, y spanwise (from
root to tip) and x to give an orthogonal system. Hence the rotation vector is !=[0; 0;�],
and the y=0 plane is the periodic plane.
The mesh used in the computations is an O–H mesh of dimensions 161(chord)× 113(span)

× 65(vertical) points, with 65 spanwise sections on the blade, i.e. 1:18× 106 points. These
dimensions were chosen such that up to �ve levels of multigrid could be used, i.e. four
coarsenings so the coarsest mesh is 10× 7× 4 cells, with four spanwise cells on the blade.
Figure 1 shows the blade surface mesh and the hub boundary plane. This shows how the
blade has zero thickness outboard of the tip to form the tipslit. Figure 2(a) shows the inner
and outer boundary (and wake plane), and (b) the outer periodic boundary. Only every other
grid point in each direction is shown.
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Figure 1. Blade surface mesh and hub plane.

Figure 2. (a) Inner and outer boundary planes, (b) outer boundary plane.

Grid for �xed-wing computations

The convergence of �xed- and rotary-wing �ows will be compared. Hence, similar geometries
must be used, and so a wing of aspect ratio six, constant section of NACA0012 is used. The
only di�erence with the rotor blade surface is at the root. Again an O–H mesh of dimensions
161(chord)× 113(span)× 65(vertical) points is used, with 65 spanwise sections on the wing.
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Figure 3. (a) Wing surface and symmetry planes, (b) inner and outer boundary planes.

Figure 3(a) shows the wing surface mesh (plus part of tip-slit) and the symmetry plane, and
(b) the same planes plus wake plane and outer boundary.

MULTIGRID SCHEME

It is well known that explicit time-stepping schemes lend themselves well to multigrid accel-
eration, see for example Reference [6]. In this approach, errors computed on the �nest mesh
are transferred to progressively coarser meshes to compute the corrections to the �ne mesh
solution. As larger time-steps are allowed on the coarser meshes, errors are propagated out
of the domain faster than is possible on the �ne mesh, resulting in faster convergence.
The scheme is presented here using N to represent the mesh number (N =1 is �nest), V is

the cell volume, R represents the residual, UR and US represent the restricted and smoothed
(updated) solution respectively, and IN and IN are the number of iterations performed on
mesh N in the decreasing and increasing mesh density directions (the ‘r’ subscript has been
omitted from U for clarity). For a simple ‘V’ cycle, the scheme can be written as

Perform I1 iterations (smoothing sweeps) on mesh 1 (�nest)

Un+�j
1 =Un

1 − �j
�t
VN
R(Un+�j−1

1 ) j=1 : : : 3

⇒ US
1

set f1 = 0
DO FOR N =2 : : : NMESH

Restrict solution to next �nest mesh

UR
N =

∑8
cell=1U

S
N−1VN−1∑8

cell=1 VN−1
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Evaluate forcing function

f N =
8∑

cell=1
{RN−1(U

S
N−1) + fN−1} −RN (U

R
N )

Perform IN iterations on mesh N

Un+�j
N =Un

N − �j
�t
VN
(R(Un+�j−1

N ) + fN ) j=1 : : : 3

⇒ US
N

ENDDO
DO FOR N =NMESH − 1 : : : 1

Compute corrections on coarser mesh
�UN+1 =U

S
N+1 −UR

N+1
Pass, prolong, corrections to current mesh

⇒ �UN

US
N =U

R
N +�UN

Perform IN iterations on mesh N

Un+�j
N =Un

N − �j
�t
VN
(R(Un+�j−1

N ) + f N ) j=1 : : : 3

⇒ US
N

ENDDO

The prolongation step, i.e. passing corrections up to next �nest mesh, can be performed
using several methods. The simplest way is to use direct injection, wherein all eight cells
surrounding each coarser mesh cell are given the same correction. More commonly a trilinear
interpolation scheme is used. As an upwind scheme is used here, an upwind solution correction
interpolation can be used. However, although theoretically an upwind-biased prolongation
results in a more robust and stable scheme, it has been shown that this does not have a
signi�cant e�ect on convergence [42; 43]. Hence, the extra computational requirement of
using such a prolongation does not seem justi�ed and a trilinear interpolation scheme is used
here.

RESULTS

The Caradonna–Tung hovering rotor test case with a tip Mach number of 0.794 was run using
a single mesh (�nest), and as multigrid with two, three, four, and �ve mesh levels. The upper
surface pressure coe�cient and Mach contours are shown in Figure 4 (50 contour levels are
plotted between −1:0 and 1.5 for CP and between 0.0 and 1.55 for Mach number).
Also shown, in Figure 5, are surface pressure coe�cient variations at several spanwise

stations compared with experimental results (plotted as squares). The results compare well,
except for the computed result showing stronger shock strength. This is expected since vis-
cosity will weaken shock strength compared to an inviscid result.
The �xed-wing case was also run with a constant wing incidence of 8◦. To obtain a similar

solution, i.e. a single shock with comparable peak pressure coe�cient, an on�ow Mach number
of 0.7 was used. Figure 6 shows upper surface pressure coe�cient and Mach contours. The
surface pressure coe�cient at several spanwise stations is shown in Figure 7. This clearly
shows how the shock strength diminishes rapidly towards the tip.
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Figure 4. Upper surface pressure coe�cient and Mach contours.

Figure 5. Computed and experimental pressure coe�cient at radial stations.

E�ect of multigrid scheme for �xed-wing computation

The convergence history, in terms of average global residual level against iteration number
for various numbers of meshes will be considered initially. The residual is de�ned as
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132 C. B. ALLEN

Figure 6. Upper surface pressure coe�cient and Mach contours.

Figure 7. Computed and experimental pressure coe�cient at radial stations.

RES=

√√√√ 1
ni: nj: nk

ni∑
i=1

nj∑
j=1

nk∑
k=1

{(
��
�t

)2
+
(
��u
�t

)2
+
(
��v
�t

)2
+
(
��w
�t

)2
+
(
�E
�t

)2}
i; j; k

(31)
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Figure 8. Multigrid cycle.

The �xed-wing case was run on a single mesh (�nest), and with two, three, four and �ve
levels of multigrid. Many combinations of the number of solution iterations on each mesh
level on both the way up and down were considered. It was found that the most e�ective
scheme was to use a simple V-cycle solving on the way down only, i.e. the ‘sawtooth’ cycle as
shown in Figure 8. Although also smoothing on the way up resulted in fewer multigrid cycles
required for convergence, in fact more total iterations and hence CPU time were required. It
was found that the fastest convergence was achieved smoothing only on the way down, with
a relaxed prolongation operator. When passing the error from mesh N + 1 to mesh N the
correction is relaxed by

US
N =U

R
N +��UN (32)

where �=0:8 was found to be the optimum value regardless of number of mesh levels.
The multigrid approach means errors are propagated out of the domain at a rate dependent

on the local grid size, and �xed-wing solutions are primarily dependent on propagating errors
away from the solid surface. Hence, it seems logical, since coarser mesh iterations are so
much ‘cheaper’ than �ne mesh ones, to increase the number of iterations when moving in the
decreasing density direction, as this gives the maximum signal propagation ‘distance’ per unit
of time. This was found to improve convergence, and the fastest convergence was achieved
using the following sequence

I1; 2; 3; 4; 5 = 2; 4; 8; 16; 32 (33)

I 1; 2; 3; 4; 5 = 0; 0; 0; 0; 0 (34)

The coarse mesh solution is e�ectively converged at every time step using this scheme.
Figure 9 shows the convergence history for two, three, four and �ve mesh levels, using the

iterations scheme above. It should be noted here that one ‘iteration’ in any multigrid scheme
takes the same amount of CPU time. For example one cycle of a three-level calculation,
with two iterations per mesh, would take the equivalent of (2 + 2=8+ 2=64+ communication
overhead) iterations on a single mesh. Hence, the CPU requirement can also be plotted on
the same graph.
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Figure 9. Multigrid convergence history.

Figure 10. Single mesh convergence history.

Using an average global residual level of 10−6 as a measure, the multigrid scheme results
in speed-ups of 4× for two levels, around 11× for three levels, around 16× for four levels,
and 17× for �ve levels. Hence, a CPU reduction of 94 per cent is achieved using �ve mesh
levels.

E�ect of multigrid scheme for rotary-wing computation

Figure 10 shows the convergence history for the single mesh computation of the Caradonna–
Tung case. It is not clear from this whether convergence has been achieved. The case was also
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Figure 11. Multigrid convergence history.

run with two, three, four and �ve levels of multigrid, and Figure 11 shows the convergence
histories. Only up to 8000 iterations are shown as there are no changes in the multigrid
residual levels beyond this point.
However, the residual history is not a particularly useful quantity when assessing conver-

gence for rotary �ows. The vortical wake takes many iterations to develop, and the devel-
opment does not have a huge e�ect on the global residual level. Furthermore, it is not clear
whether there is some inherent unsteadiness in these hovering cases. Figure 11 implies that
all four multigrid solutions have converged in around 8000 iterations or less, while Figure 10
seems to show that even after 50 000 iterations the single grid solution has still not settled,
apparently resulting in a large multigrid speed-up. Analysing the solution shows that this is
not the case however.
Global convergence of the solution is limited by both the development of the wake, and

the slow convergence of the near-hub area where the solution is e�ectively incompressible.
Hence the thrust coe�cient for the inner 20 per cent of the blade has been considered, as
this is a more sensitive convergence measure. The thrust coe�cient is de�ned as

CT =
Lift for all blades
�(�RTip)2�R2Tip

(35)

and this is usually normalized by the solidity of the rotor, �,

�=
NbladesRTipc

�R2Tip
(36)

Figure 12 shows the variation of the inner blade thrust coe�cient for single mesh, and
multigrid with two, three, four and �ve levels. This shows that the single mesh solution
converges to a constant value of inner blade thrust coe�cient in around 30 000 iterations,
two-level multigrid in around 13 000, three-level in under 10 000, four-level in just over 7000,
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Figure 12. Multigrid thrust coe�cient history.

and �ve-level in around 6000. Hence, the speed-ups are approximately 2:3× for two levels,
3:1× for three levels, 4:2× for four levels and 5:0× for �ve levels.
The optimum iteration scheme was also analysed for the rotary-wing case. The requirement

for the wake to develop means that convergence is not solely dependent on propagating errors
away from the solid surface. Hence, increasing the number of iterations on the coarser meshes
was not e�cient here. It was found that the optimum scheme was

I1; 2; 3; 4; 5 = 2; 2; 2; 2; 2 (37)

I 1; 2; 3; 4; 5 = 0; 0; 0; 0; 0: (38)

The relaxation parameter value �=0:8 was again found to be optimum, regardless of the
number of mesh levels used.
The speed-ups obtained are nowhere near as large as for the �xed-wing case and, as

mentioned previously, there are two reasons for this. The �rst is the slow convergence of the
inner blade region, where the �ow is e�ectively incompressible. The second is the requirement
of capturing the tip vortex over several turns in the rotary case. Neither of these phenomena
are present in a �xed-wing �ow. The complexity of the rotary-wing �ow�eld is demonstrated
in Figure 13, which shows vorticity contours for the downstream periodic plane, i.e. the y=0
plane, 90◦ behind the blade. The vorticity in each cell is de�ned as

!= |∇× q
r
| (39)

and 40 contour levels are plotted between 0 and 0.5. This shows that three turns of the tip
vortex have been captured. This compares well with previously published results [14].
The vortical wake capturing requirement is unique to rotary �ows, but the problem of

incompressible �ow near the hub is a more common problem. One obvious solution would be
to apply a preconditioning algorithm, see for example References [44; 45], which are proven
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Figure 13. Vorticity contours in plane 90◦ behind blade.

to improve convergence for low speed �ows. However, preconditioning is not considered here
as it is the fundamental di�erence in convergence properties of �xed- and rotary-wing �ows
which is of interest.

CONCLUSIONS

An upwind Euler solver has been presented, with multigrid convergence acceleration, and
applied to both �xed-wing and multibladed hovering rotary-wing �ows. Using �ve levels of
multigrid, a reduction in required CPU time of over 80 per cent has been demonstrated for
rotary-wing computations, and 94 per cent for �xed-wing computations. Hence, the conver-
gence of �xed-wing and rotary-wing computations are vastly di�erent. The rotary-wing �ow
su�ers from very slow convergence of the inner blade region, where the �ow is e�ectively
incompressible. Furthermore, the vortical wake of a hovering rotor must develop over several
turns before convergence is achieved, whereas for �xed-wing computations the far-�eld grid
and solution have little signi�cance.
The most e�ective convergence has been achieved using a simple V-cycle, solving when

moving in the decreasing mesh density direction only. However, due to the di�erent solution
evolution, the optimum number of iterations on each mesh level is di�erent. For the �xed-
wing case errors simply need to be propagated out of the domain as quickly as possible,
so the number of iterations is increased as the grid density decreases. Convergence of the
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rotary-wing �ow requires the wake to develop, so increasing the number of iterations on the
coarser meshes is not e�cient, and two solution iterations on each level is found to give the
fastest convergence. A trilinear prolongation operator is employed with a relaxation parameter
which has an optimum value of 0.8, regardless of the number of mesh levels employed or
�ow type.

NOTATION

a acoustic speed
A cell face area
c aerofoil chord
CT thrust coe�cient
E total energy
f trans�nite interpolation function
f±
mass split mass �ux components

f±
energy split energy �ux components
F �ux vector
�F �ux vector normal to cell face
�F
±

split �ux vector components normal to cell face
G source term vector
�M Mach number normal to cell face
M cell face area moment vector
�M normalized cell face area moment vector
n outward cell face normal vector
P static pressure
q velocity vector
r coordinate vector
R rotation matrix
RTip blade tip radius
t time
�t time step
u; v; w velocity components
U contravariant velocity
�u; �v; �w velocity components in local cell face axis
�U contravariant velocity normal to cell face
U conserved quantity vector
U∞ freestream speed
V cell volume
x; y; z inertial co-ordinates

Greek characters
�j time-step factor
� ratio of speci�c heats
	 spatial interpolation weighting parameter
�; �; � parametric co-ordinates
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 blending function
� density
� solidity of rotor
! angular velocity vector
� angular velocity

Subscripts

r rotating reference frame

REFERENCES

1. Allen CB, Jones DP. Parallel implementation of an upwind Euler solver for inviscid hovering rotor �ows.
Aeronautical Journal 1999; 103(1021):129–138.

2. Fedorenko RP. The speed of convergence of one iterative process. Zh. Vych. Mat. 1964; 4(5):559–564. (USSR
Computational Mathematics and Mathematical Physics 1964; 4:227–235.)

3. Bakhvalov NS. On the convergence of a relaxation method with natural constraints of the elliptic operator.
Zh. Vych. Mat. 1966; 6(5):861–885. (USSR Computational Mathematics and Mathematical Physics 1966;
6:101–135.)

4. Brandt A. Multi-level adaptive solutions to boundary-value problems. Math. Comp. 1977; 31(138):333–390.
5. Brandt A. Guide to multigrid development. In Hackbusch and Trottenberg (eds), Multigrid Methods. Springer-
Verlag: New York; Lecture Notes in Mathematics 1982: 960.

6. Jameson A. Transonic �ow calculations. Report MAE 1751, Princeton University, 1984.
7. Jameson A. Time-dependent calculations using multigrid, with applications to unsteady �ows past airfoils and
wings. AIAA Paper 91-1596, 1991.

8. Ni RH. A multiple-grid scheme for solving the Euler equations. AIAA Journal 1982; 20(11):1565–1571.
9. Arnone A, Liou M-S, Povinelli LA. Multigrid time-accurate integration of Navier–Stokes equations. AIAA
Paper 93-3361, 1993.

10. Mavriplis DJ. Three-dimensional multigrid for the Euler equations. AIAA Journal 1992; 30:1753–1761.
11. Kroll N. Computation of the �ow �elds of propellers and hovering rotors using Euler equations. Paper 28, 12th

European Rotorcraft Forum, Garmisch-Partenkirchen, Germany, September 1986.
12. Boniface JC, Sides J. Numerical simulation of steady and unsteady Euler �ows around multibladed helicopter

Rotors. Paper C10, 19th European rotorcraft forum, Cernobbio (Como), Italy, September 1993.
13. Pahlke K, Raddatz J. 3D Euler methods for multibladed rotors in hover and forward �ight. Paper 20, 19th

European Rotorcraft Forum, Cernobbio (Como), Italy, September 1993.
14. Raddatz J, Pahlke K. 3D Euler calculations of multibladed rotors in hover: investigations of the wake capturing

properties. 75th AGARD Fluid Dynamics Panel Meeting and Symposium on ‘Aerodynamics and Aeroacoustics
of Rotorcraft’, Berlin, Germany, October 1994.

15. Raddatz J, Rouzard O. Calculations of multibladed rotors in hover using 3D Euler methods of DLR and onera.
Paper 11, 21st European Rotorcraft Forum, St. Petersburg, Russia, August 1995.

16. Boniface JC, Sides J. Extension and improvement of existing Euler code of ONERA for multibladed rotors in
Hover. HELISHAPE Technical Report, 1995.

17. Sankar LN, Wake BE, Lekoudis SG. Solution of the unsteady Euler equations for �xed and rotating wing
con�gurations. AIAA Journal of Aircraft 1986; 23(4):283–289.

18. Sankar LN, Wake BE, Lekoudis SG. Computation of rotor blade �ows using the Euler equations. AIAA Journal
of Aircraft 1986; 23(7):582–588.

19. Strawn RC, Barth TJ. A �nite-volume Euler solver for computing rotary-wing aerodynamics on unstructured
meshes. Proceedings of the 48th Annual American Helicopter Society Forum, Washington, D.C., June 1992.

20. Allen CB. The e�ect of grid topology and density on inviscid hovering rotor solutions. I. Mech. E. Journal of
Aerospace Engineering, Part G7 1999.

21. Srinivasan GR, Baeder JD, Obayashi S, McCroskey WJ. Flow�eld of a lifting rotor in hover a Navier–Stokes
simulation. AIAA Journal of Aircraft 1992; 30(10):2371–2377.

22. Wake BE, Egolf TA. Implementation of a rotary-wing Navier–Stokes solver on a massively parallel computer.
AIAA Journal of Aircraft 1991; 29(1):58–67.

23. Zhong B, Qin N. Non-Inertial multiblock Navier–Stokes calculation for hovering rotor �ow�elds using High
order upwind scheme. Proceedings Royal Aeronautical Society Aerodynamics Conference, London, April 2000.

24. Van-Leer B. Flux-vector splitting for the Euler equations. Lecture Notes in Physics 1982; 170:507–512.
25. Williams AL, Fiddes SP. Solution of the 2D unsteady Euler equations on a structured moving grid. Bristol

University Aero. Eng. Dept. Report No. 453, 1992.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:121–140



140 C. B. ALLEN

26. Allen CB. Central-di�erence and upwind-biased schemes for steady and unsteady Euler aerofoil computations.
Aeronautical Journal 1995; 99:52–62.

27. Allen CB. The reduction of numerical entropy generated by unsteady shockwaves. Aeronautical Journal 1997;
101(1001):9–16.

28. Allen CB. Grid adaptation for unsteady �ow computations. I. Mech. E. Journal of Aerospace Engineering,
Part G4 1997; 211:237–250.

29. Hounjet MHL, Allen CB, Vigevano L, Gasparini L, Pagano A. GEROS: A European grid generator for
rotorcraft simulation methods. Presented at 6th International Conference on Numerical Grid Generation in
Computational Field Simulations, London, July 1998. Proceedings, pp. 813–822.

30. D’Alascio A, Dubuc L, Peshkin D, Vigevano L, Allen CB, Pagano A, Salvatore F, Boniface J-C, Hounjet
MHL, Kroll N, Scholl E, Kokkalis A, Righi M. First Results of the EROS European Unsteady Euler Code on
Overlapping Grids. Presented at ECCOMAS 98 Conference, Athens, September 1998.

31. Renzoni P, D’Alascio A, Kroll N, Peshkin D, Hounjet MHL, Boniface J-C, Vigevano L, Morino L, Allen CB,
Dubuc L, Righi M, Scholl E, Kokkalis A. EROS: A European Euler code for helicopter rotor simulations.
Journal of Progress in Aerospace Sciences 2000.

32. Allen CB. CHIMERA volume grid generation within the EROS code. I. Mech. E. Journal of Aerospace
Engineering, Part G 2000.

33. Parpia IH. Van-Leer �ux-vector splitting in moving coordinates. AIAA Journal 1988; 26:113–115.
34. Obayashi S. Freestream capturing for moving coordinates in three dimensions. AIAA Journal 1992; 30(4):1125–

1128.
35. Anderson WK, Thomas JL, Van-Leer B. Comparison of �nite volume �ux vector splittings for the Euler

equations. AIAA Journal 1986; 24:1453–1460.
36. Jameson A, Schmidt W, Turkel E. Numerical solution of the Euler equations by �nite-volume methods using

Runge–Kutta time-stepping schemes. AIAA Paper 81-1259, 1981.
37. Turkel E, Van-Leer B. Runge–Kutta methods for partial di�erential equations. ICASE Report, 1983.
38. Gordon WJ, Hall CA. Construction of curvilinear coordinate systems and applications of mesh generation.

International Journal of Numerical Methods in Engineering 1973; 7:461–477.
39. Eriksson LE. Generation of boundary-conforming grids around wing-body con�gurations using trans�nite

interpolation. AIAA Journal 1982; 20(10):1313–1320.
40. Thompson JF. A general three dimensional elliptic grid generation system on a composite block-structure.

Computer Methods in Applied Mechanics and Engineering 1987; 64:377–411.
41. Caradonna FX, Tung C. Experimental and analytical studies of a model helicopter rotor in Hover. NASA

TM-81232, September 1981.
42. Grasso F, Marini M. Multigrid techniques for hypersonic viscous �ows. AIAA Journal 1993; 31:1729–1731.
43. Grasso F, Marini M. Solutions of hypersonic viscous �ows with total variation diminishing multigrid techniques.

Computers and Fluids 1995; 24:571–592.
44. Turkel E. Preconditioned methods for solving the incompressible and low speed compressible equations. Journal

of Computation Physics 1987; 72:277–298.
45. Van Leer B, et al. Characteristic time-stepping or local preconditioning of the Euler equations. AIAA Paper

92-1552, June 1991.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:121–140


